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Abstract. We outline here the next generation of cluster–finding algorithms. We
show how advances in Computer Science and Statistics have helped develop ro-
bust, fast algorithms for finding clusters of galaxies in large multi–dimensional
astronomical databases like the Sloan Digital Sky Survey (SDSS). Specifically, this
paper presents four new advances: (1) A new semi-parametric algorithm – nick-
named “C4” – for jointly finding clusters of galaxies in the SDSS and ROSAT
All–Sky Survey databases; (2) The introduction of the False Discovery Rate into
Astronomy; (3) The role of kernel shape in optimizing cluster detection; (4) A new
determination of the X–ray Cluster Luminosity Function which has bearing on the
existence of a “deficit” of high redshift, high luminosity clusters. This research is
part of our “Computational AstroStatistics” collaboration (see Nichol et al. 2000)
and the algorithms and techniques discussed herein will form part of the “Virtual
Observatory” analysis toolkit.

1 Introduction

Clusters of galaxies are critical cosmological probes for two fundamental rea-
sons. First, galaxy clusters are the most massive virialised objects in the
universe and reside in the tail of the mass distribution function. Thus the
distribution, density and properties of clusters are very sensitive to the mean
mass density of the universe. For example, in a low Ωm universe, the evolution
of the mass function terminates at early epochs, thus “freezing” the number
of massive systems. The opposite is true for Ωm = 1, were the mass function
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continues to evolve up to the present epoch (see Press & Schtecter 1974; PS).
Unlike other cluster methods of measuring Ωm (mass-to–light ratios, baryon
fractions etc), this technique provides a global measure of Ωm and is relatively
insensitive to ΩΛ (see Romer et al. 2000). For a more complete description of
PS and this effect, the reader is referred to Viana & Liddle (1999), Reichart
et al. (1999) & Borgani et al. (1999), and references therein. Many authors
have used this technique with a preponderance of the evidence for a low Ωm,
but the observed scatter between the various measurements is large. For ex-
ample, we have seen Ωm = 0.3 ± 0.1 (Bahcall et al. 1997), Ωm = 0.45 ± 0.2
(Eke et al. 1998), Ωm = 0.5±0.14 (Henry 1997), Ωm ∼ 0.75 (Viana & Liddle
1999), Ωm ∼ 0.85±0.2 (Sadat et al. 1998), and Ω = 0.96+0.36

−0.32 (Reichart et al.
1999). This scatter could be the combination of several effects including small
sample sizes, errors in the survey selection functions as well as the necessity
to compare local samples of clusters to more distant samples in any effort to
see an evolutionary signal.

Secondly, each cluster represents a sample of galaxies that has formed
at roughly the same time under roughly the same initial conditions. Thus,
each cluster is a laboratory for understanding how galaxies form, evolve and
interact with their environment. Such phenomena are usually known as the
morphology-density relation and/or the Butcher–Oemler Effect. There are
many proposed models to explain these phenomena including ram–pressure
stripping, pressure–induced star formation, temperature–inhibited star for-
mation, galaxy harassment, shocks from cluster merger events etc. As yet, we
do not have a definitive answer but observations of clusters - as a function
of the cluster properties - will help to dis–entangle these different possible
mechanisms.

It is clear that we need larger, more objective, cluster catalogs to help
obtain high precision measurements of Ωm as well as determine the physical
mechanism(s) behind galaxy evolution in clusters (see Kron 1993 for a discus-
sion of the role selection effects could play in the Butcher–Oemler Effect). To
significantly move beyond previous work, any new sample of clusters should
possess the following key attributes: i) Contain many thousands of clusters;
ii) Possess a well understood selection function; iii) Probe a broad range in
redshift and mass, and iv) Possess physically meaningful cluster parameters.
There are several cluster projects under-way that satisfy these criteria (see,
for example, Collins et al. 2000; Romer et al. 2000; Gladder & Yee 2000;
Ebeling et al. 2000) including the SDSS–RASS Cluster (SRC) survey which
we discuss below.

2 The SDSS–RASS Cluster Catalog

The SRC is a new sample of clusters constructed through the unique union of
the Sloan Digital Sky Survey (SDSS; see York et al. 2000 & Castander et al.
2000) and the ROSAT All–Sky Survey (RASS; see Voges et al. 2000). Using
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Fig. 1. A greyscale SDSS im-
age of RXJ0254, an X–ray
luminous cluster (Lx(44) =
4) at z = 0.36. The bright-
est member of this cluster is
r′ = 18.7 and is just below
the main SDSS spectroscopic
galaxy target limit. However,
this galaxy has the correct col-
ors and magnitude to be in-
cluded in the SDSS Bright
Red Galaxy (York et al. 2000)
sample. The signal–to–noise
of the individual galaxies in
this image is reasonably high
(> 20) thus allowing us to
study their characteristics.

state–of–the–art cluster–finding methodologies, we plan to construct a sample
of ∼ 50, 000 clusters and groups that will span a large dynamic range in both
redshift and mass as well as possessing a well–understood selection function.
Moreover, we will endeavor to measure physically meaningful parameters for
these clusters like X–ray and optical luminosities, lensing masses, velocity
dispersions etc. Finally, the SRC also represents a critical first step in the
construction of the “Virtual Observatory” (VO); for the first time, we plan
to perform a joint optical–X-ray cluster selection using these existing, multi–
dimensional, data archives.

To illustrate the power of combining the SDSS and RASS, we have con-
structed a preliminary SRC catalog which was constructed simply from the
cross–correlation of the RASS source lists (both bright and faint source cat-
alogs from Voges et al. 2000) with a preliminary SDSS cluster sample con-
structed by Annis et al. (2000) using the maxBCG algorithm. We discuss our
new method of finding clusters in the SDSS–RASS in Section 3

In Figure 1, we show an example of a high redshift cluster detected in this
preliminary catalog, while in Figure 2, we show a very preliminary determi-
nation of the SRC X–ray Cluster Luminosity Function (XCLF) (21 clusters
above LROSAT(44) > 1 in the redshift range 0.0 < z < 0.45). Here we have
used runs 752 & 756 (213 deg2) and 94 & 125 (90 deg2) from the SDSS data
(see York et al. 2000) which we have naively assumed to be complete to
a flux limit of 4 and 8 × 10−13 erg/s/cm2 respectively. This assumption is
valid for our luminous clusters but breaks down for lower luminous clus-
ters and undoubtedly accounts for the “low” data points in our XCLF at
LROSAT(44) ∼ 1. We have also conservatively cut the catalog at z < 0.45 and
removed suspicious match–ups by hand (see Sheldon et al. 2000). However,
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Fig. 2. We show here
a preliminary XCLF
for the SRC survey
(0.0 < z < 0.45;
stars). The shaded
region is the local
(0.0 < z < 0.3) x-ray
luminosity function,
plus 1σ errors, as
measured by de
Grandi et al (1999)
and Ebeling et al
(1998). The circles
are the SHARC
(0.3 < z < 0.7 Burke
et al. 1997; Nichol
et al. 1999). Poisson
errors are shown.

the SRC does have candidate z ≃ 0.7 clusters which will require spectroscopic
confirmation (Annis et al. 2000).

We present this data to illustrate the power of the SRC for detecting
real clusters to high redshift; the combination of these two, large area, cata-
logs (SDSS and RASS) allows us to push to fainter fluxes (and thus higher
redshift) than one would be able with either survey on its own. Finally, the
XCLF presented here is fully consistent with other measurements and adds
new information regarding the existence of a “deficit” of high redshift, high
luminosity clusters which has been debated by many authors (e.g. Reichart
et al. 1999; Nichol et al. 1999; Gioia et al. 1999). This is because the SRC
covers a large area of sky (≃ 300deg2 at present) which is vital for detecting
massive, X–ray bright clusters at high redshift (see Ebeling et al. 2000).

3 Finding Clusters in Multiple Dimensions

Over the last few years, there has been significant progress in the development
of new cluster–finding algorithms primarily driven by the quality and quantity
of new data as well as the increased availability of fast computing. These new
methods include the matched–filter algorithm (Postman et al. 1996, Kawasaki
et al 1998, Kepner et al 1999, Bramel et al. 2000), the wavelet–filter (Slezak
et al 1990), the “photometric redshift” method (Kodama et al. 1999), and
the “density–morphology” relationship (Ostrander et al. 1998) or the E/S0
ridge–line (Gladders & Yee 2000).

Here we outline a new algorithm we have developed which exploits the
quality and quantity of data available to us. For instance, the SDSS will
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provide accurate, calibrated magnitudes in 5 filters (u
′

g
′

, r
′

, i
′

, and z
′

) as
well as accurate star-galaxy separation, galaxy shapes, photometric redshifts
and estimates of the galaxy type. These increased number of observables allow
us to refine our definition of a cluster to be an overdensity of galaxies in both
space (on the sky and in redshift) and rest–frame color. Furthermore, we can
require that the cluster members be early–type galaxies and that the cluster,
as a whole, is coincident with extended hard X-ray emission. The motivation
for this definition of a cluster is the growing body of evidence that the cores
of clusters are dominated by ellipticals of the same colors suggesting they are
coeval (see Gladders & Yee 2000), and possess a hot, intracluster medium
(see Holden et al. 2000). Via this definition, we can radically increase the
signal–to–noise of clusters in this multi–dimensional space thus effectively
removing projection effects and X–ray mis–identifications which presently
plague optical and X–ray cluster surveys respectively. We have nicknamed
this algorithm “C4” for 4–color clustering.

We note that this definition may bias us against certain types of clus-
ters e.g. young systems where the X–ray gas may be more diffuse (thus a
lower emissivity) and/or have a bluer, less homogeneous, galaxy population.
However, over the redshift range probed by SDSS & RASS (z < 0.8), most
clusters are expected to be well evolved since they have formation epochs
of z ≥ 2. Moreover, we will need to quantify our exact selection function
regardless of the algorithm used (see Section 3.4).

We present here a brief overview of the C4 algorithm and then present
specific details about parts of the algorithm below. We start by consider-
ing galaxy Xi which is any detected galaxy with a known or photometric
redshift. The fundamental question the C4 cluster-finding algorithm poses
is: Is there an overdensity of cluster-like galaxies about galaxy Xi? Our so-
lution for answering this question is rather simple. First, we count Ni, the
number of galaxies in a multi–dimensional aperture around galaxy Xi. The
aperture (discussed in detail in Section 3.1) is defined in angular, redshift
and color space. Second, for each test galaxy Xi, we measure a field distri-
bution, F (Xi), which is constructed via Monte Carlo realisations of placing
the same size aperture as the test galaxy on thousands of randomly chosen
galaxies in regions of similar extinction and seeing as Xi. Third, if galaxy Xi

is in a clustered region, then Ni will lie in the tail of the distribution and
we can measure a probability, pi, that galaxy Xi is a member of this field
distribution F (Xi). We then have to decide what acceptable cut-off in pi dif-
ferentiates between cluster galaxies and field galaxies (see Section 3.2). Note
that C4 does not find clusters but detects cluster–like galaxies. It is based on
a well-defined description of the field, which is easily measured from a large-
volume survey such as the SDSS. Those galaxies that have a low probability
of being a field galaxy are then considered to be cluster members. Finally, we
use these cluster–like galaxies to locate the positions of the actual clusters in
the data.
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Fig. 3. The distribution of p–values for the 183 galaxies within the aperture of
SRC galaxy RXJ0254 (Figure 1). Inserted is a blow–up of small p–values which
illustrates the strong peak near zero i.e. probability in 6–dimensional space that
these galaxies were drawn from the field distribution. This illustrates the strength
of clustering one can obtain since 6–dimensional space is mostly empty and thus
finding any grouping of galaxies on the sky with the same redshift & color is enough
to make it highly unlikely that they are drawn from a random field population.

3.1 Choosing The Aperture: Shape Doesn’t Matter

A critical part of computing Ni – the galaxy count in multi–dimensions
around our test galaxy – is the choice of the size and shape of the count-
ing aperture i.e. we are using a kernel to smooth the data. We note here
that we focus on defining the width of this kernel or aperture, rather than
the shape, since it is well–known in the statistical literature that the choice
of bandwidth of a kernel is more important when optimally smoothing data
than the exact shape of that kernel.

To discuss this further, suppose that X1, . . . , Xn are independent obser-
vations from a probability density function f(x). A common estimator is the
kernel estimator defined by

f̂(x) =
1

n

n
∑

i=1

1

hn
K

(

x − Xi

hn

)

.

The function K is called the kernel and is usually assumed to satisfy K(x) ≥
0,

∫

K(x)dx = 1,
∫

xK(x)dx = 0. For example, the Gaussian kernel is K(x) =

{2π}−1/2e−x2/2. The number hn is the bandwidth and controls the amount
of smoothing. One can see from numerical experimentation that the choice of
K has very little effect on the estimator f̂ but the choice of hn has a drastic
effect. This can also be proved mathematically. For example, consider the
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integrated means squared error (IMSE) defined by

IMSE = E

∫

(f(x) − f̂(x))2dx

where E is the average or expectation value. One can derive an analytic
expression for IMSE and from this expression one sees that K has little
effect on IMSE but hn has a drastic effect. Details are given in Density
Estimation for Statistics and Data Analysis by Silverman (1986). In fact,
one can show that the optimal kernel, which minimizes IMSE, is given by
K(x) = (3/4)(1 − t2/5)/

√
5 for |x| <

√
5 and 0 otherwise. This is called

the Epanechnikov kernel. But the efficiency of other kernels (the ratio of
the IMSEs) is typically near 1. For example, the Gaussian kernel has an
efficiency of 0.95 compared to an Epanechnikov kernel. In contrast, the effect
of hn is dramatic, so; how does one find the optimal bandwidth? This is
clearly difficult and in statistics, it is usually achieved using “cross-validation”
where one estimates the IMSE(hn) and finds hn to minimize this function
(see Silverman 1986).

Therefore, we simply use a top–hat kernel in the C4 algorithm and use
the known observables of the galaxy Xi (redshift and colors), as well as
known physical relationships, to define the aperture size or bandwidth. We
start by defining an input mass scale to search for clusters. This allows us
to calculate r200 which is converted to an angular aperture (∆θ) as function
of cosmology. In this conversion, we use either the known or photometric
redshift (see Connolly et al. 1995). Next we define a redshift aperture, ∆z,
which is based on the expected radial velocity dispersion for a cluster with
r200 (determined analytically). This is also convolved with the error on the
observed or photometric z. Finally, we use a 4-dimensional color-aperture,
∆ic, for i = 1, 4, where the width of this aperture is simply the measured
errors on the SDSS photometric magnitudes for galaxy Xi.

Once we have defined our aperture, we then simply count the number
of neighboring galaxies within this 6–dimensional aperture. We note that
all the SDSS galaxies will possess errors on the redshift (photometric and
spectroscopic) and colors, so instead of counting each galaxy as a single delta–
function in our count Ni, we can treat each galaxy as an error ellipsoids
in 6–dimensional space and compute the amount of overlap between these
ellipsoids and the aperture. This is non-trivial and therefore, we will Monte
Carlo the effect by computing many Ni around each test galaxy Xi perturbing
in each case the surrounding galaxies by their observed errors. This will result
in a distribution of Ni for each galaxy, f(Ni).

The counting queries we have outlined above are computationally inten-
sive and thus, to make this problem tractable, we will exploit the emerging
algorithmic technology of multi–resolutional KD–trees (see Connolly et al.
2000) which can scale as N logN , instead of N2, for range searches like those
discussed herein. We defer discussion of these computational issues to a forth-
coming paper.
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1
Fig. 4. (Top left) A 3◦

× 3◦ area from SDSS photometric data runs 752 & 756
(rerun 1). We show all galaxies regardless of redshift, color or magnitude. (Top
right) This is the result of running the C4 algorithm on this data using a 5% FDR
threshold. We rejected 4% of the galaxies on the left as being field–like galaxies.
(Bottom) Same area taken from the RASS hard photon data (each dot is at least
one photon). The large cluster seen in the field is Abell 1882 (richness class 3 and
z = 0.137). The axes are RA and DEC

Having measured Ni, we now need to build the field distribution, F (Xi).
Recall, we want to use the same size aperture as that of galaxy Xi. In order
to determine F (Xi), we will count galaxies around a random distribution of
galaxies that lie in regions of similar extinction and seeing to that of galaxy
Xi. As above, these field counts can be corrected for observational errors
and thus F (Xi) will be the sum of many count distributions around each
randomly selected field galaxy.

3.2 Choosing The Threshold: False Discovery Rate

Once we have Ni and F (Xi) for each test galaxy Xi, we can compute the
probability, or p–value, that this test galaxy was drawn from the field. This
is achieved by fitting a Poisson distribution to the lower end of the F (Xi)
distribution (which must be the field population) and comparing Ni to that
fitted distribution, see Figure 3.

In this process, we can make two types of errors: (1) falsely identifying a
real field galaxy as cluster-like (false rejection); (2) falsely identfiying a real
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cluster galaxy as field like (false non-rejection). The next critical decision is
to determine the p-cutoff below which a galaxy is rejected as being field–like.

This threshold could be chosen arbitrarily. For instance, for each test we
could apply a 2σ confidence requirement and reject any galaxy with p < 0.05.
However, after Ntotalgalaxies = 1million tests, we would expect to have made
as many as 50000 mistakes through false rejections. This is far too many
mistakes which could be reduced by applying a higher confidence requirement
e.g. 4σ → pcutoff = 3 × 10−7. This leads to the traditional approach of
permitting no false rejections with 95% confidence through lowering the p-
cutoff to 0.05/Ngal where Ngal is the number of test galaxies. This is known
as the Bonferoni Method where each individual test is very conservative to
allow for no false rejections. The disadvantage of this approach is that a lot
of cluster–like galaxies would be mis-classified as field–like (i.e. false non-
rejections) since we have enforced a very strict limit on the number of field–
like galaxies that are allowed to be mis–classified as cluster–like galaxies.
This is an extreme case where one sacrifices errors in one direction for the
control of mis–classification errors in the opposite direction. If there were
no cluster–like galaxies in our test sample of galaxies, then the Bonferoni
Method would be correct, however ∼ 20% of all galaxies live in cluster &
group environments, so if we using this method we would loose significant
sensitivity to detecting these galaxies.

Instead of either of the above two thresholding techniques, we use the
newly devised False Discovery Rate (FDR; Abramovich et al. 2000). FDR is
a new, more adaptive approach which, in the limit of all the galaxies in the
test sample being field–like, would be equivalent to the Bonferoni Method.
However, FDR becomes less conservative, and makes fewer errors in the other
direction, as we diverge from this idealized case. In practical terms, FDR
allows us to define in advance a desired false detection rate i.e. up–front only
α × 100% of the rejected galaxies are in error based on our null hypothesis.
Moreover, the FDR procedure is simple:

1. For each test galaxy, calculate a p-value based on the null hypothesis that
it is a field galaxy.

2. Sort these according to increasing p-value.
3. Rank the p-values as a function of n/N where n is the nth galaxy’s p-value

out of N total test galaxies.
4. Draw a line with slope (α) and intercept 0.
5. From the right, determine the first crossing of the line with the ranked

p-values.
6. Anything with a p-value smaller than the crossing p-value is rejected.
7. For our cluster–finding algorithm, these rejected galaxies are our cluster–

like galaxies, with at most α× 100% errors based on our null field galaxy
hypothesis.

The beauty of FDR is that (a) it is simple, (b) it possesses a rigorous statis-
tical proof, and (c) it works for highly correlated data (in this case the slope
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becomes α/logN). In summary, FDR is a new tool in statistics which has
the potential to significantly enhance astronomical analyses; this is the first
application of this new statistic in astronomy and demonstrates the power
of our “Computational AstroStatistics” collaboration. Other possible appli-
cations could be determining the sky threshold values in source detection,
point–source extraction in CMB analyses etc. We will explore these applica-
tion in a forthcoming paper.

3.3 Clustering Cluster–like Galaxies

In Figure 4, we show the results of running our C4 algorithm, with FDR, on
the SDSS commissioning photometric data (York et al. 2000). The next task
is to “cluster” these cluster–like galaxies into a sample of unique clusters of
galaxies. To do this, we employ the Expectation Maximization (EM) algo-
rithm which is a mixture model of Gaussians designed to be highly adaptive
and multi–resolutional in nature. Moreover, it is naturally multi–dimensional
thus allowing us to feed it three galaxy spatial coordinates (angular position
and redshift) as well as three X–ray dimensions (hard photon energy and
angular position). The rational for jointly clustering the X–ray and optical
data is to drastically increase the signal–to–noise of distant and poor clusters
by suppressing projection effects and X–ray mis–identifications. The details
of mixture–model clustering and the EM algorithm can be found in Con-
nolly et al. (2000). In addition, to using EM we plan to investigate adaptive
kernel density estimators. We note here that during the clustering process
additional information can be used to “mark” or “up–weight” galaxies. For
example, SDSS data can be used to determine if a galaxy is elliptical–like
based on the imaging morphology (likelihood fits to each galaxy for both a
da Vaucouleurs and exponential profile), photometric spectral classification
information of Connolly & Szalay (1999) as well as spectral classifications
where available (see Castander et al. 2000 for details).

3.4 The Selection Function & Systematic Biases

The most direct method of quantifying the selection function of our SDSS
cluster catalog is via Monte Carlo simulations (see Bramel et al. 2000; Kim
et al.2000). These simulations can then be converted to an effective area, or
volume, of the survey as a function of the input cluster parameters (redshift,
luminosity etc). In addition to simulations, we can obtain information about
the selection function of the various SDSS cluster catalogs (Annis et al. 2000;
Kim et al. 2000) by cross-correlating them against each other and the low
redshift SDSS galaxy redshift survey. These different SDSS cluster catalogs
use different cluster selection criteria since they are explore different science
issues and are therefore, complementary.

In summary, we have outline here our new C4 cluster–finding algorithm
that exploits the quality and quantity of the multi–dimensional survey data
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now becoming available. It also exploits new techniques and algorithms com-
ing out of Computer Science and Statistics. We plan to jointly “cluster”
optical and X–ray data to help improve the signal–to–noise of distant and/or
poor clusters/groups of galaxies. This represents a first step toward the “Vir-
tual Observatory”; the joint scientific analysis of archival multi–wavelength
survey databases. The algorithms and software we develop will become part
of the “Virtual Observatory” analysis toolkit.
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